ГАЗ-53 ГАЗ-3307 ГАЗ-66

Кто и когда открыл протон и нейтрон

Протоны принимают участие в термоядерных реакциях , которые являются основным источником энергии, генерируемой звёздами . В частности, реакции pp -цикла , который является источником почти всей энергии, излучаемой Солнцем , сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

В физике протон обозначается p (или p + ). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) - H + , астрофизическое - HII.

Открытие

Свойства протона

Отношение масс протона и электрона, равное 1836,152 673 89(17) , с точностью до 0,002 % равно значению 6π 5 = 1836,118…

Внутренняя структура протона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий (2 ГэВ ) с протонами (Нобелевская премия по физике 1961 г.) . Протон состоит из тяжёлой сердцевины (керна) радиусом см, с высокой плотностью массы и заряда, несущей ≈ 35 % {\displaystyle \approx 35\,\%} электрического заряда протона и окружающей его относительно разреженной оболочки. На расстоянии от ≈ 0 , 25 ⋅ 10 − 13 {\displaystyle \approx 0{,}25\cdot 10^{-13}} до ≈ 1 , 4 ⋅ 10 − 13 {\displaystyle \approx 1{,}4\cdot 10^{-13}} см эта оболочка состоит в основном из виртуальных ρ - и π -мезонов, несущих ≈ 50 % {\displaystyle \approx 50\,\%} электрического заряда протона, затем до расстояния ≈ 2 , 5 ⋅ 10 − 13 {\displaystyle \approx 2{,}5\cdot 10^{-13}} см простирается оболочка из виртуальных ω - и π -мезонов, несущих ~15 % электрического заряда протона .

Давление в центре протона, создаваемое кварками, составляет порядка 10 35 Па (10 30 атмосфер), то есть выше давления внутри нейтронных звёзд .

Магнитный момент протона измеряется путём измерения отношения резонансной частоты прецессии магнитного момента протона в заданном однородном магнитном поле и циклотронной частоты обращения протона по круговой орбите в том же самом поле .

С протоном связаны три физических величины, имеющих размерность длины:

Измерения радиуса протона с помощью атомов обычного водорода, проводимые разными методами с 1960-х годов, привели (CODATA -2014) к результату 0,8751 ± 0,0061 фемтометра (1 фм = 10 −15 м ) . Первые эксперименты с атомами мюонного водорода (где электрон заменён на мюон) дали для этого радиуса на 4 % меньший результат 0,84184 ± 0,00067 фм . Причины такого различия пока неясны.

Стабильность

Свободный протон стабилен, экспериментальные исследования не выявили никаких признаков его распада (нижнее ограничение на время жизни - 2,9⋅10 29 лет независимо от канала распада , 1,6⋅10 34 лет для распада в позитрон и нейтральный пион , 7,7⋅10 33 лет для распада в положительный мюон и нейтральный пион ). Поскольку протон является наиболее лёгким из барионов , стабильность протона является следствием закона сохранения барионного числа - протон не может распасться в какие-либо более лёгкие частицы (например, в позитрон и нейтрино) без нарушения этого закона. Однако многие теоретические расширения Стандартной модели предсказывают процессы (пока не наблюдавшиеся), следствием которых было бы несохранение барионного числа и, следовательно, распад протона.

Протон, связанный в атомном ядре, способен захватывать электрон с электронной K-, L- или M-оболочки атома (т. н. «электронный захват »). Протон атомного ядра, поглотив электрон, превращается в нейтрон и одновременно испускает нейтрино : p+e − → e . «Дырка» в K-, L- или M-слое, образовавшаяся при электронном захвате, заполняется электроном одного из вышележащих электронных слоев атома с излучением характеристических рентгеновских лучей, соответствующих атомному номеру Z − 1 , и/или Оже-электронов . Известно свыше 1000 изотопов от 7
4 до 262
105 , распадающихся путём электронного захвата. При достаточно высоких доступных энергиях распада (выше 2m e c 2 ≈ 1,022 МэВ ) открывается конкурирующий канал распада - позитронный распад p → +e + e . Следует подчеркнуть, что эти процессы возможны только для протона в некоторых ядрах, где недостающая энергия восполняется переходом образовавшегося нейтрона на более низкую ядерную оболочку; для свободного протона они запрещены законом сохранения энергии.

Источником протонов в химии являются минеральные (азотная , серная , фосфорная и другие) и органические (муравьиная , уксусная , щавелевая и другие) кислоты. В водном растворе кислоты способны к диссоциации с отщеплением протона, образующего катион гидроксония .

В газовой фазе протоны получают ионизацией - отрывом электрона от атома водорода . Потенциал ионизации невозбуждённого атома водорода составляет 13,595 эВ . При ионизации молекулярного водорода быстрыми электронами при атмосферном давлении и комнатной температуре первоначально образуется молекулярный ион водорода (H 2 +) - физическая система, состоящая из двух протонов, удерживающихся вместе на расстоянии 1,06 одним электроном. Стабильность такой системы, по Полингу , вызвана резонансом электрона между двумя протонами с «резонансной частотой», равной 7·10 14 с −1 . При повышении температуры до нескольких тысяч градусов состав продуктов ионизации водорода изменяется в пользу протонов - H + .

Применение

Пучки ускоренных протонов используются в экспериментальной физике элементарных частиц (изучение процессов рассеяния и получение пучков других частиц), в медицине (протонная терапия онкологических заболеваний) .

См. также

Примечания

  1. http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants --- Complete Listing
  2. CODATA Value: proton mass
  3. CODATA Value: proton mass in u
  4. Ahmed S.; et al. (2004). “Constraints on Nucleon Decay via Invisible Modes from the Sudbury Neutrino Observatory”. Physical Review Letters . 92 (10): 102004. arXiv :hep-ex/0310030 . Bibcode :2004PhRvL..92j2004A . DOI :10.1103/PhysRevLett.92.102004 . PMID .
  5. CODATA Value: proton mass energy equivalent in MeV
  6. CODATA Value: proton-electron mass ratio
  7. , с. 67.
  8. Хофштадтер P. Структура ядер и нуклонов // УФН . - 1963. - Т. 81, № 1. - С. 185-200. - ISSN. - URL: http://ufn.ru/ru/articles/1963/9/e/
  9. Щёлкин К. И. Виртуальные процессы и строение нуклона // Физика микромира - М.: Атомиздат, 1965. - С. 75.
  10. Жданов Г. Б. Упругие рассеяния, периферические взаимодействия и резононы // Частицы высоких энергий. Высокие энергии в космосе и лаборатории - М.: Наука, 1965. - С. 132.
  11. Burkert V. D. , Elouadrhiri L. , Girod F. X. The pressure distribution inside the proton (англ.) // Nature. - 2018. - May (vol. 557 , no. 7705 ). - P. 396-399 . - DOI :10.1038/s41586-018-0060-z .
  12. Бете, Г. , Моррисон Ф. Элементарная теория ядра. - М: ИЛ, 1956. - С. 48.

Водорода, элемента, который имеет наиболее простое строение. Оно имеет положительный заряд и практически неограниченное время жизни. Это самая стабильная частица во Вселенной. Протоны, образовавшиеся в результате Большого Взрыва, до сих пор не распались. Масса протона составляет 1,627*10-27 кг или 938,272 эВ. Чаще эту величину выражают в электронвольтах.

Протон был открыт «отцом» ядерной физики Эрнестом Резерфордом. Он выдвинул гипотезу о том, что ядра атомов всех химических элементов состоят из протонов, так как по массе они превышают ядро атома водорода в целое число раз. Резерфорд поставил интересный опыт. В те времена уже была открыта естественная радиоактивность некоторых элементов. С помощью альфа-излучения (альфа-частицы представляют собой ядра гелия с высокими энергиями) ученый облучал атомы азота. В результате такого взаимодействия вылетала частица. Резерфорд предположил, что это протон. Дальнейшие опыты в пузырьковой камере Вильсона подтвердили его предположение. Так в 1913 году была открыта новая частица, но гипотеза Резерфорда о составе ядра оказалась несостоятельной.

Открытие нейтрона

Великий ученый нашел ошибку в своих расчетах и выдвинул гипотезу о существовании еще одной частицы, входящей в состав ядра и обладающей практически той же массой, что и протон. Экспериментально он не смог ее обнаружить.

Это сделал в 1932 году сделал английский ученый Джеймс Чедвик. Он поставил опыт, в ходе которого бомбардировал атомы бериллия высокоэнергетическими альфа-частицами. В результате ядерной реакции из ядра бериллия вылетала частица, впоследствии названная нейтроном. За свое открытие Чедвик уже через три года получил Нобелевскую премию.

Масса нейтрона действительно мало отличается от массы протона (1,622*10-27 кг), но эта частица не обладает зарядом. В этом смысле она нейтральна и в то же время способна вызывать деление тяжелых ядер. Из-за отсутствия заряда нейтрон может легко пройти через высокий кулоновский потенциальный барьер и внедриться в структуру ядра.

Протон и нейтрон обладают квантовыми свойствами (могут проявлять свойства частиц и волн). Нейтронное излучение используют в медицинских целях. Высокая проникающая способность позволяет этому излучению ионизировать глубинные опухоли и другие злокачественные образования и обнаруживать их. При этом энергия частиц относительно маленькая.

Нейтрон, в отличие от протона, нестабильная частица. Ее время жизни составляет около 900 секунд. Она распадается на протон, электрон и электронное нейтрино.

Изучая строение вещества, физики узнали, из чего сделаны атомы, добрались до атомного ядра и расщепили его на протоны и нейтроны. Все эти шаги давались довольно легко - надо было лишь разогнать частицы до нужной энергии, столкнуть их друг с другом, и тогда они сами разваливались на составные части.

А вот с протонами и нейтронами такой трюк уже не прошел. Хотя они и являются составными частицами, их не удается «разломать на части» ни в каком даже самом сильном столкновении. Поэтому физикам потребовались десятилетия для того, чтобы придумать разные способы заглянуть внутрь протона, увидеть его устройство и форму. В наши дни изучение структуры протона - одна из самых активных областей физики элементарных частиц.

Природа дает намеки

История изучения структуры протонов и нейтронов берет свое начало с 1930-х годов. Когда в дополнение к протонам были открыты нейтроны (1932), то, измерив их массу, физики с удивлением обнаружили, что она очень близка к массе протона. Более того, оказалось, что протоны и нейтроны «чувствуют» ядерное взаимодействие совершенно одинаковым образом. Настолько одинаковым, что, с точки зрения ядерных сил, протон и нейтрон можно считать как бы двумя проявлениями одной и той же частицы - нуклона: протон - это электрически заряженный нуклон, а нейтрон - нейтральный нуклон. Поменяйте протоны на нейтроны - и ядерные силы (почти) ничего не заметят.

Физики это свойство природы выражают как симметрию - ядерное взаимодействие симметрично относительно замены протонов на нейтроны, подобно тому как бабочка симметрична относительно замены левого на правое. Эта симметрия, кроме того что она сыграла важную роль в ядерной физике, была на самом деле первым намеком на то, что у нуклонов имеется интересное внутреннее строение. Правда, тогда, в 30-е годы, физики этот намек не осознали.

Понимание пришло позже. Началось с того, что в 1940–50-е годы в реакциях столкновения протонов с ядрами различных элементов ученые с удивлением обнаруживали всё новые и новые частицы. Не протоны, не нейтроны, не открытые к тому времени пи-мезоны, которые удерживают нуклоны в ядрах, а какие-то совсем новые частицы. При всём своем разнообразии эти новые частицы обладали двумя общими свойствами. Во-первых, они, так же как и нуклоны, очень охотно участвовали в ядерных взаимодействиях - сейчас такие частицы называют адронами. А во-вторых, они были исключительно нестабильными. Самые неустойчивые из них распадались на другие частицы всего за триллионную долю наносекунды, не успев пролететь даже на размер атомного ядра!

Долгое время «зоопарк» адронов представлял из себя полную мешанину. В конце 1950-х годов физики узнали уже достаточно много разных видов адронов, начали сравнивать их друг с другом и вдруг увидели некую общую симметричность, даже периодичность их свойств. Была высказана догадка, что внутри всех адронов (в том числе и нуклонов) сидят некие простые объекты, которые получили название «кварки». Комбинируя кварки разными способами, можно получать разные адроны, причем именно такого типа и с такими свойствами, которые обнаруживались в эксперименте.

Что делает протон протоном?

После того как физики открыли кварковое устройство адронов и узнали, что кварки бывают нескольких разных сортов, стало понятно, что из кварков можно сконструировать много различных частиц. Так что уже никого не удивляло, когда последующие эксперименты продолжали один за другим находить новые адроны. Но среди всех адронов обнаружилось целое семейство частиц, состоящих, точно так же как и протон, только из двух u -кварков и одного d -кварка. Этакие «собратья» протона. И вот тут физиков подстерегал сюрприз.

Давайте сначала сделаем одно простое наблюдение. Если у нас есть несколько предметов, состоящих из одинаковых «кирпичиков», то более тяжелые предметы содержат больше «кирпичиков», а более легкие - меньше. Это очень естественный принцип, который можно называть принципом комбинирования или принципом надстройки, и он прекрасно выполняется как в повседневной жизни, так и в физике. Он проявляется даже в устройстве атомных ядер - ведь более тяжелые ядра просто состоят из большего числа протонов и нейтронов.

Однако на уровне кварков этот принцип совершенно не работает, и, надо признаться, физики еще не до конца разобрались, почему. Оказывается, тяжелые собратья протона тоже состоят из тех же самых кварков, что и протон, хотя они в полтора, а то и в два раза тяжелее протона. Они отличаются от протона (и различаются между собой) не составом, а взаимным расположением кварков, тем, в каком состоянии относительно друг друга эти кварки находятся. Достаточно изменить взаимное положение кварков - и мы из протона получим другую, заметно более тяжелую, частицу.

А что будет, если все-таки взять и собрать вместе больше трех кварков? Получится ли новая тяжелая частица? Удивительно, но не получится - кварки разобьются по трое и превратятся в несколько разрозненных частиц. Почему-то природа «не любит» объединять много кварков в одно целое! Лишь совсем недавно, буквально в последние годы, стали появляться намеки на то, что некоторые многокварковые частицы всё же существуют, но это лишь подчеркивает, насколько природа их не любит.

Из этой комбинаторики следует очень важный и глубокий вывод - масса адронов вовсе не складывается из массы кварков. Но если массу адрона можно увеличить или уменьшить простым перекомбинированием составляющих его кирпичиков, значит, вовсе не сами кварки ответственны за массу адронов. И действительно, в последующих экспериментах удалось узнать, что масса самих кварков составляет лишь около двух процентов от массы протона, а вся остальная тяжесть возникает за счет силового поля (ему отвечают специальные частицы - глюоны), связывающего кварки вместе. Изменяя взаимное расположение кварков, например отодвигая их подальше друг от друга, мы тем самым изменяем глюонное облако, делаем его более массивным, из-за чего и возрастает масса адрона (рис. 1).

Что творится внутри быстро летящего протона?

Всё описанное выше касается неподвижного протона, на языке физиков - это устройство протона в его системе покоя. Однако в эксперименте структура протона была впервые обнаружена в других условиях - внутри быстро летящего протона.

В конце 1960-х годов в экспериментах по столкновению частиц на ускорителях было замечено, что летящие с околосветовой скоростью протоны вели себя так, словно энергия внутри них не распределена равномерно, а сконцентрирована в отдельных компактных объектах. Эти сгустки вещества внутри протонов знаменитый физик Ричард Фейнман предложил называть партонами (от английского part - часть).

В последующих экспериментах были изучены многие свойства партонов - например, их электрический заряд, их количество и доля энергии протона, которую каждый из них несет. Оказывается, заряженные партоны - это кварки, а нейтральные партоны - это глюоны. Да-да, те самые глюоны, которые в системе покоя протона просто «прислуживали» кваркам, притягивая их друг к другу, теперь являются самостоятельными партонами и наряду с кварками несут «вещество» и энергию быстро летящего протона. Опыты показали, что примерно половина энергии запасена в кварках, а половина - в глюонах.

Партоны удобнее всего изучать в столкновении протонов с электронами. Дело в том, что, в отличие от протона, электрон не участвует в сильных ядерных взаимодействиях и его столкновение с протоном выглядит весьма просто: электрон на очень короткое время испускает виртуальный фотон, который врезается в заряженный партон и порождает в конце концов большое число частиц (рис. 2). Можно сказать, что электрон является отличным скальпелем для «вскрытия» протона и разделения его на отдельные части - правда, лишь на очень короткое время. Зная, как часто происходят такие процессы на ускорителе, можно измерить количество партонов внутри протона и их заряды.

Кто такие партоны на самом деле?

И здесь мы подходим к еще одному поразительному открытию, которое сделали физики, изучая столкновения элементарных частиц при высоких энергиях.

В обычных условиях вопрос о том, из чего состоит тот или иной предмет, имеет универсальный ответ для всех систем отсчета. Например, молекула воды состоит из двух атомов водорода и одного атома кислорода - и не важно, смотрим ли мы на неподвижную или на движущуюся молекулу. Однако это правило - казалось бы, такое естественное! - нарушается, если речь идет об элементарных частицах, движущихся со скоростями, близкими к скорости света. В одной системе отсчета сложная частица может состоять из одного набора субчастиц, а в другой системе отсчета - из другого. Получается, что состав - понятие относительное !

Как такое может быть? Ключевым здесь является одно важное свойство: количество частиц в нашем мире не фиксировано - частицы могут рождаться и исчезать. Например, если столкнуть вместе два электрона с достаточно большой энергией, то вдобавок к этим двум электронам может родиться либо фотон, либо электрон-позитронная пара, либо еще какие-нибудь частицы. Всё это разрешено квантовыми законами, именно так и происходит в реальных экспериментах.

Но этот «закон несохранения» частиц работает при столкновениях частиц. А как же получается, что один и тот же протон с разных точек зрения выглядит состоящим из разного набора частиц? Дело в том, что протон - это не просто три кварка, сложенные вместе. Между кварками существует силовое глюонное поле. Вообще, силовое поле (как, например, гравитационное или электрическое поле) - это некая материальная «сущность», которая пронизывает пространство и позволяет частицам оказывать силовое влияние друг на друга. В квантовой теории поле тоже состоит из частиц, правда из особенных - виртуальных. Количество этих частиц не фиксировано, они постоянно «отпочковываются» от кварков и поглощаются другими кварками.

Покоящийся протон действительно можно представить себе как три кварка, между которыми перескакивают глюоны. Но если взглянуть на тот же протон из другой системы отсчета, словно из окна проезжающего мимо «релятивистского поезда», то мы увидим совсем иную картину. Те виртуальные глюоны, которые склеивали кварки вместе, покажутся уже менее виртуальными, «более настоящими» частицами. Они, конечно, по-прежнему рождаются и поглощаются кварками, но при этом какое-то время живут сами по себе, летят рядом с кварками, словно настоящие частицы. То, что выглядит простым силовым полем в одной системе отсчета, превращается в другой системе в поток частиц! Заметьте, сам протон мы при этом не трогаем, а только смотрим на него из другой системы отсчета.

Дальше - больше. Чем ближе скорость нашего «релятивистского поезда» к скорости света, тем более удивительную картину внутри протона мы увидим. По мере приближения к скорости света мы заметим, что глюонов внутри протона становится всё больше и больше. Более того, они иногда расщепляются на кварк-антикварковые пары, которые тоже летят рядом и тоже считаются партонами. В результате ультрарелятивистский протон, т. е. протон, движущийся относительно нас со скоростью, очень близкой к скорости света, предстает в виде взаимопроникающих облачков кварков, антикварков и глюонов, которые летят вместе и как бы поддерживают друг друга (рис. 3).

Читатель, знакомый с теорией относительности, может забеспокоиться. Вся физика основана на том принципе, что любой процесс протекает одинаково во всех инерциальных системах отсчета. А тут получается, что состав протона зависит от системы отсчета, из которой мы его наблюдаем?!

Да, именно так, но это никак не нарушает принцип относительности. Результаты физических процессов - например, какие частицы и сколько рождаются в результате столкновения - действительно оказываются инвариантными, хотя состав протона зависит от системы отсчета.

Эта необычная на первый взгляд, но удовлетворяющая всем законам физики ситуация схематично проиллюстрирована на рисунке 4. Здесь показано, как столкновение двух протонов с большой энергией выглядит в разных системах отсчета: в системе покоя одного протона, в системе центра масс, в системе покоя другого протона. Взаимодействие между протонами осуществляется через каскад расщепляющихся глюонов, но только в одном случае этот каскад считается «внутренностью» одного протона, в другом случае - частью другого протона, а в третьем - это просто некий объект, которым обмениваются два протона. Этот каскад существует, он реален, но к какой части процесса его надо относить - зависит от системы отсчета.

Трехмерный портрет протона

Все результаты, про которые мы только что рассказали, базировались на экспериментах, выполненных довольно давно - в 60–70-х годах прошлого века. Казалось бы, с тех пор всё уже должно быть изучено и все вопросы должны найти свои ответы. Но нет - устройство протона по-прежнему остается одной из самых интересных тем в физике элементарных частиц. Более того, в последние годы интерес к ней снова возрос, потому что физики поняли, как получить «трехмерный» портрет быстро движущегося протона, который оказался гораздо сложнее портрета неподвижного протона.

Классические эксперименты по столкновению протонов рассказывают лишь о количестве партонов и их распределении по энергии. В таких экспериментах партоны участвуют как независимые объекты, а значит, из них нельзя узнать, как партоны расположены друг относительно друга, как именно они складываются в протон. Можно сказать, что долгое время физикам был доступен лишь «одномерный» портрет быстро летящего протона.

Для того чтобы построить настоящий, трехмерный, портрет протона и узнать распределение партонов в пространстве, требуются гораздо более тонкие эксперименты, чем те, которые были возможны 40 лет назад. Такие эксперименты физики научились ставить совсем недавно, буквально в последнее десятилетие. Они поняли, что среди огромного количества разных реакций, которые происходят при столкновении электрона с протоном, есть одна особенная реакция - глубоко-виртуальное комптоновское рассеяние , - которая и сможет рассказать о трехмерной структуре протона.

Вообще, комптоновским рассеянием, или эффектом Комптона, называют упругое столкновение фотона с какой-нибудь частицей, например с протоном. Выглядит оно так: прилетает фотон, поглощается протоном, который на короткое время переходит в возбужденное состояние, а потом возвращается в исходное состояние, испуская фотон в каком-нибудь направлении.

Комптоновское рассеяние обычных световых фотонов не приводит ни к чему интересному - это простое отражение света от протона. Для того чтобы «вступила в игру» внутренняя структура протона и «почувствовались» распределения кварков, надо использовать фотоны очень большой энергии - в миллиарды раз больше, чем в обычном свете. А как раз такие фотоны - правда, виртуальные - легко порождает налетающий электрон. Если теперь объединить одно с другим, то и получится глубоко-виртуальное комптоновское рассеяние (рис. 5).

Главная особенность этой реакции состоит в том, что она не разрушает протон. Налетающий фотон не просто бьет по протону, а как бы тщательно его ощупывает и затем улетает прочь. То, в какую сторону он улетает и какую часть энергии у него отбирает протон, зависит от устройства протона, от взаимного расположения партонов внутри него. Именно поэтому, изучая этот процесс, можно восстановить трехмерный облик протона, как бы «вылепить его скульптуру».

Правда, для физика-экспериментатора сделать это очень непросто. Нужный процесс происходит довольно редко, и зарегистрировать его трудно. Первые экспериментальные данные об этой реакции были получены лишь в 2001 году на ускорителе HERA в немецком ускорительном комплексе DESY в Гамбурге; новая серия данных сейчас обрабатывается экспериментаторами. Впрочем, уже сегодня, на основании первых данных, теоретики рисуют трехмерные распределения кварков и глюонов в протоне. Физическая величина, про которую физики раньше строили лишь предположения, наконец стала «проступать» из эксперимента.

Ждут ли нас какие-нибудь неожиданные открытия в этой области? Вполне вероятно, что да. В качестве иллюстрации скажем, что в ноябре 2008 года появилась интересная теоретическая статья, в которой утверждается, что быстро летящий протон должен иметь вид не плоского диска, а двояковогнутой линзы. Так получается потому, что партоны, сидящие в центральной области протона, сильнее сжимаются в продольном направлении, чем партоны, сидящие на краях. Было бы очень интересно проверить эти теоретические предсказания экспериментально!

Почему всё это интересно физикам?

Зачем вообще физикам надо знать, как именно распределено вещество внутри протонов и нейтронов?

Во-первых, этого требует сама логика развития физики. В мире есть много поразительно сложных систем, с которыми современная теоретическая физика пока не может полностью совладать. Адроны - одна из таких систем. Разбираясь с устройством адронов, мы оттачиваем способности теоретической физики, которые вполне могут оказаться универсальными и, возможно, помогут в чем-то совсем ином, например при изучении сверхпроводников или других материалов с необычными свойствами.

Во-вторых, тут есть непосредственная польза для ядерной физики. Несмотря на почти вековую историю изучения атомных ядер, теоретики до сих пор не знают точный закон взаимодействия протонов и нейтронов.

Им приходится этот закон отчасти угадывать, исходя из экспериментальных данных, отчасти конструировать на основе знаний о структуре нуклонов. Тут-то и помогут новые данные о трехмерном устройстве нуклонов.

В-третьих, несколько лет назад физики сумели получить ни много ни мало новое агрегатное состояние вещества - кварк-глюонную плазму. В таком состоянии кварки не сидят внутри отдельных протонов и нейтронов, а свободно гуляют по всему сгустку ядерного вещества. Достичь его можно, например, так: тяжелые ядра разгоняются в ускорителе до скорости, очень близкой к скорости света, и затем сталкиваются лоб в лоб. В этом столкновении на очень короткое время возникает температура в триллионы градусов, которая и расплавляет ядра в кварк-глюонную плазму. Так вот, оказывается, что теоретические расчеты этого ядерного плавления требуют хорошего знания трехмерного устройства нуклонов.

Наконец, эти данные очень нужны для астрофизики. Когда тяжелые звезды взрываются в конце своей жизни, от них часто остаются чрезвычайно компактные объекты - нейтронные и, возможно, кварковые звезды. Сердцевина этих звезд целиком состоит из нейтронов, а может быть даже и из холодной кварк-глюонной плазмы. Такие звезды уже давно обнаружены, но что происходит у них внутри - можно только догадываться. Так что хорошее понимание кварковых распределений может привести к прогрессу и в астрофизике.

В этой статье вы найдете информацию о протоне, как элементарной частице, стоящей в основе мироздания наряду с другими её элементами, используемой в химии и физике. Будут определены свойства протона, его характеристика в химии и стабильность.

Что такое протон

Протон - это один из представителей элементарных частичек, который относят к барионам, э.ч. в которых фермионы сильно взаимодействуют, а сама частица состоит из 3-х кварков. Протон является стабильной частицей и имеет личный импульсный момент - спин ½. Физическое обозначение протона - p (или p +)

Протон - элементарная частица, принимающая участие в процессах термоядерного типа. Именно этот вид реакций по существу - главный источник энергии, генерируемый звездами во всей вселенной. Практически весь объем энергии, выделяемый Солнцем, существует только за счет объединения 4-х протонов в одно гелиевое ядро с образованием одного нейтрона из двух протонов.

Свойства присущие протону

Протон - это один из представителей барионов. Это факт. Заряд и масса протона - постоянные величины. Электрически протон заряжен +1, а его масса определена в различных единицах измерения и составляет в МэВ 938,272 0813(58), в килограммах протона вес заключен в цифрах 1,672 621 898(21)·10 −27 кг, в единицах атомных масс вес протона равен 1,007 276 466 879(91) а. е. м., а в соотношении с массой электрона, протон весит 1836,152 673 89(17) в соотношении с электроном.

Протон, определение которого уже давалось выше, с точки зрения физики, - это элементарная частичка, имеющая проекцию изоспина +½, а ядерная физика воспринимает эту частицу с противоположным знаком. Сам протон является нуклоном, а состоит из 3-х кварков (двух кварков u и одного кварка d).

Экспериментально исследовал структуру протона ядерщик-физик из Соединенных Штатов Америки - Роберт Хофштадтер. Для достижения этой цели физик сталкивал протоны с электронами высоких энергий, а за описание был удостоен Нобелевской премии в области физики.

В состав протона входит керн (тяжелая сердцевина), который заключает в себе около тридцати пяти процентов энергии электрического заряда протона и имеет довольно большую плотность. Оболочка, окружающая керн, относительно разряжена. Состоит оболочка в основном из виртуальных мезонов типа и p и несет в себе около пятидесяти процентов электрического потенциала протона и находится на расстоянии, равном приблизительно от 0.25*10 13 до 1,4*10 13 . Еще дальше, на расстоянии около 2,5*10 13 сантиметров оболочка состоит из и w виртуальных мезонов и содержит в себе приблизительно оставшиеся пятнадцать процентов электрического заряда протона.

Устойчивость и стабильность протона

В свободном состоянии протон не проявляет никаких признаков распада, что свидетельствует о его стабильности. Стабильное состояние протона, как легчайшего представителя барионов, обусловлено законом сохранения числа барионов. Не нарушая закон СБЧ, протоны способны распадаться на нейтрино, позитрон и другие, более легкие элементарные частицы.

Протон ядра атомов имеет возможность захватывать некоторые виды электронов, имеющие K, L, M атомные оболочки. Протон, совершив электронный захват, переходит в нейтрон и в результате выделяет нейтрино, а образовавшаяся в результате электронного захвата «дыра» заполняется за счет электронов свыше лежащих атомных слоев.

В системах неинерциального отсчета протоны должны приобретать ограниченное время жизни, которое возможно рассчитать, это обусловлено эффектом (излучение) Унру, который в квантовой теории поля предсказывает возможное созерцание теплового излучения в системе отсчета, которая ускоряется при условии отсутствия данного вида излучения. Таким образом, протон при наличии конечного времени своего существования может подвергаться бета-распаду в позитрон, нейтрон или нейтрино, несмотря на то, что сам процесс такого распада запрещен ЗСЭ.

Использование протонов в химии

Протон - это H атом, построенный из единого протона и не имеющий электрона, так что в химическом понимании, протон - это одно ядро атома H. Нейтрон на пару с протоном создают ядро атома. В ПТХЭ Дмитрия Ивановича Менделеева номер элемента указывает число протонов в атоме конкретного элемента, а определяется номер элемента атомным зарядом.

Катионы водорода представляют собой очень сильные электронные акцепторы. В химии протоны получают в основном из кислот органической и минеральной природы. Ионизация является способом получения протонов в газовых фазах.

Протон (элементарная частица)

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику (без виртуальных частиц, противоречащих закону сохранения энергии),
  • Законы сохранения - фундаментальные законы физики.
В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок. Сказочные персонажи Стандартной модели (кварки с глюонами) вместе со сказочными гравитонами и сказками "Квантовой теории" уже проникли в учебники физики - и вводят в заблуждение детей, выдавая математические сказки за действительность . Сторонники честной Новой физики пытались этому противостоять, но силы были не равны. И так было до 2010 года до появления полевой теории элементарных частиц, когда борьба за возрождение ФИЗИКИ-НАУКИ перешла на уровень открытого противостояния подлинной научной теории с математическими сказками, захватившими власть в физике микромира (да и не только).

Но о достижениях Новой физики человечество бы не узнало, без интернета, поисковиков и возможности свободно говорить правду на страницах сайта. Что касается изданий, зарабатывающих на науке, то кто их сегодня читает за деньги, когда есть возможность быстро и свободно получить требуемую информацию в интернете.

    1 Протон - это элементарная частица
    2 Когда физика оставалась наукой
    3 Протон в физике
    4 Радиус протона
    5 Магнитный момент протона
    6 Электрическое поле протона

      6.1 Электрическое поле протона в дальней зоне
      6.2 Электрические заряды протона
      6.3 Электрическое поле протона в ближней зоне
    7 Масса покоя протона
    8 Время жизни протона
    9 Правда о Стандартной модели
    10 Новая физика: Протон - итог

Эрнест Резерфорд в 1919 году, облучая альфа-частицами ядра азота, наблюдал образование ядер водорода. Образующуюся в результате столкновения частицу Резерфорд назвал протоном. Первые фотографии следов протона в камере Вильсона были получены в 1925 году Патриком Блэкеттом. Но сами ионы водорода (чем и являются протоны) были известны задолго до опытов Резерфорда.
Сегодня, в 21 веке, физика может сказать о протонах значительно больше.

1 Протон это элементарная частица

Представления физики о структуре протона менялись, по мере развития физики.
Первоначально физика считала протон элементарной частицей, и так было до 1964 года, когда ГеллМанн и Цвейг независимо предложили гипотезу кварков.

Первоначально, кварковая модель адронов ограничивалась только тремя гипотетическими кварками и их античастицами. Это позволяло правильно описать спектр известных на тот момент элементарных частиц, без учета лептонов, которые не вписались в предлагаемую модель и потому признавались элементарными, наравне с кварками. Платой за это явилось введение, не существующих в природе, дробных электрических зарядов. Затем, по мере развития физики и поступления новых экспериментальных данных, кварковая модель постепенно разрасталась, трансформировалась, в итоге превратившись в Стандартную модель.

Физики усердно занялись поисками новых гипотетических частиц. Поиски кварков велись в космических лучах, в природе (поскольку их дробный электрический заряд невозможно скомпенсировать) и на ускорителях.
Шли десятилетия, росла мощность ускорителей, а результат поисков гипотетических кварков был всегда один: кварки НЕ найдены в природе .

Видя перспективу гибели кварковой (а затем Стандартной) модели, ее сторонники сочинили и подсунули человечеству сказочку о том, что в некоторых экспериментах наблюдаются следы кварков. - Проверить эту информацию невозможно - экспериментальные данные обрабатываются с помощью Стандартной модели, а она всегда выдаст нечто за то, что ей нужно. История физики знает примеры, когда вместо одной частицы подсовывали другую - последней такой манипуляцией экспериментальными данными явилось подсовывание векторного мезона в качестве сказочного бозона Хиггса, якобы отвечающего за массу частиц, но при этом не создающую их гравитационное поле. За эту математическую сказку даже дали Нобелевскую премию по физике. В нашем случае в качестве сказочных кварков подсунули стоячие волны переменного электромагнитного поля, о котором писали волновые теории элементарных частиц.

Когда трон под стандартной моделью вновь зашатался, ее сторонники сочинили и подсунули человечеству новую сказочку для самых маленьких, под названием "Конфайнмент" . Любой мыслящий человек сразу увидит в ней издевательство над законом сохранения энергии - фундаментальным законом природы. Но сторонники Стандартной модели не желают видеть ДЕЙСТВИТЕЛЬНОСТЬ.

2 Когда физика оставалась наукой

Когда физика еще оставалась наукой в ней истина определялась не мнением большинства - а экспериментом. В этом принципиальное отличие ФИЗИКИ-НАУКИ от математических сказок, выдаваемых за физику.
Все эксперименты по поиску гипотетических кварков (кроме, конечно, подсовывания своих верований, под видом экспериментальных данных) однозначно показали: кварков в природе НЕТ .

Теперь сторонники Стандартной модели пытаются подменить результат всех экспериментов, ставший приговором для Стандартной модели, своим коллективным мнением, выдавая его за действительность. Но сколько сказочке не виться, а конец все равно будет. Вопрос только, какой это будет конец: сторонники Стандартной модели проявят разум, мужество и изменят свои позиции вслед за единогласным вердиктом экспериментов (а точнее: вердиктом ПРИРОДЫ), или их отправит в историю под всеобщий смех Новая физика - физика 21 века , как сказочников, попытавшихся надуть все человечество. Выбор за ними.

Теперь о самом протоне.

3 Протон в физике

Протон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +e (систематизация по полевой теории элементарных частиц).
Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), протон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что протон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что протон обладает электромагнитными полями, и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

В настоящий момент, полевая теория элементарных частиц (в отличие от Стандартной модели) не противоречит экспериментальным данным о строении и спектре элементарных частиц и поэтому может рассматриваться физикой в качестве работающей в природе теории.

Структура электромагнитного поля протона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)
Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,346%,
  • постоянное магнитное поле (H) - 7,44%,
  • переменное электромагнитное поле - 92,21%.
Отсюда следует, что для протона m 0~ =0.9221m 0 и около 8 процентов его массы сосредоточено в постоянных электрическом и магнитном полях. Соотношение между энергией сосредоточенной в постоянном магнитном поле протона и энергии сосредоточенной в постоянном электрическом поле равно 21,48. Этим объясняется наличие у протона ядерных сил .

Электрическое поле протона состоит из двух областей: внешней области с положительным зарядом и внутренней области с отрицательным зарядом. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд протона +e. В основе его квантования лежат геометрия и строение элементарных частиц.

А так выглядят фундаментальные взаимодействия элементарных частиц, действительно существующие в природе:

4 Радиус протона

Полевая теория элементарных частиц определяет радиус (r) частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для протона это будет 3,4212 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля, получится радиус области пространства, занимаемой протоном:

Для протона это будет 4,5616 ∙10 -16 м. Таким образом, внешняя граница протона находится от центра частицы на расстоянии 4,5616 ∙10 -16 м. Небольшая часть массы, сосредоточенная в постоянном электрическом и постоянном магнитном поле протона, в соответствии с законами электродинамики, находится за пределами данного радиуса.

5 Магнитный момент протона

В противовес квантовой теории, полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращением электрических зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому постоянные магнитные поля есть у всех элементарных частиц с квантовым числом L>0 .
Полевая теория элементарных частиц не считает магнитный момент протона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.
Так основной магнитный момент протона создается двумя токами:

  • (+) с магнитным моментом +2 (eħ/m 0 c)
  • (-) с магнитным моментом -0,5 (eħ/m 0 c)
Для получения результирующего магнитного момента протона надо сложить оба момента, умножить на процент энергии, содержащийся в волновом переменном электромагнитном поле протона (разделенный на 100%) и добавить спиновую составляющую (см. Полевая теория элементарных частиц. Часть 2, раздел 3.2), в результате получим 1,3964237 eh/m 0p c. Для того чтобы перевести в обычные ядерные магнетоны надо полученное число умножить на два - в итоге имеем 2,7928474.

Когда физика предполагала, что магнитные моменты элементарных частиц создаются спиновым вращением их электрического заряда, для их измерения были предложены соответствующие единицы: для протона - это eh/2m 0p c (вспомним, что величина спина протона равна 1/2) названная ядерным магнетоном. Теперь 1/2 можно было бы и опустить, как не несущую смысловой нагрузки, и оставить просто eh/m 0p c.

А если серьезно, то внутри элементарных частиц нет электрических токов, но есть магнитные поля (и нет электрических зарядов, но есть электрические поля). Невозможно заменить подлинные магнитные поля элементарных частиц, на магнитные поля токов (как и подлинные электрические поля элементарных частиц, на поля электрических зарядов), без потери точности - эти поля имеют разную природу. Здесь какая-то другая электродинамика - Электродинамика Физики Поля, которую еще предстоит создать, как и саму Физику Поля.

6 Электрическое поле протона

6.1 Электрическое поле протона в дальней зоне

Знания физики об структуре электрического поля протона менялись по мере развития физики. Первоначально считалось, что электрическое поле протона представляет собой поле точечного электрического заряда +e. Для данного поля будут:
потенциал электрического поля протона в точке (А) в дальней зоне (r > > r p) точно, в системе СИ равен:

напряженность E электрического поля протона в дальней зоне (r > > r p) точно, в системе СИ равна:

где n = r /|r| - единичный вектор из центра протона в направлении точки наблюдения (А), r - расстояние от центра протона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, r p =Lħ/(m 0~ c) - радиус протона в полевой теории, L - главное квантовое число протона в полевой теории, ħ - постоянная Планка, m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося протона, C - скорость света. (В системе СГС отсутствует множитель Множитель СИ .)

Данные математические выражения верны для дальней зоны электрического поля протона: r p , но физика тогда предполагала, что их верность распространяется и в ближней зоне, до расстояний порядка 10 -14 см.

6.2 Электрические заряды протона

В первой половине 20 века физика считала, что у протона имеется только один электрический заряд и он равен +e.

После появления гипотезы кварков, физика предположила что внутри протона имеются не один, а три электрических заряда: два электрических заряда +2e/3 и один электрический заряд -e/3. В сумме эти заряды дают +e. Это было сделано, поскольку физика предположила, что протон имеет сложную структуру и состоит из двух u-кварков с зарядом +2e/3 и одного d-кварка с зарядом -e/3. Но кварки не были найдены ни в природе, ни на ускорителях ни при каких энергиях и оставалось либо принять их существование на веру (что и сделали сторонники Стандартной модели), либо искать другую структуру элементарных частиц. Но вместе с этим в физике постоянно накапливалась экспериментальная информация об элементарных частицах и когда ее накопилось достаточно для переосмысления сделанного, на свет появилась полевая теория элементарных частиц.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы (не электрический заряд является первопричиной электрического поля, как физика считала в 19 веке, а электрические поля элементарных частиц таковы, что они соответствуют полям электрических зарядов). А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой. В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков" внутри протона - будет точнее, если взять 8 "кварков". Понятное дело, что электрические заряды таких "кварков" будут совершенно иными, чем считает стандартная модель (со своими кварками).

Полевая теория элементарных частиц установила, что у протона, как и у любой другой положительно заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса :

  • электрический радиус внешнего постоянного электрического поля (заряда q + =+1.25e) - r q+ = 4.39 10 -14 см,
  • электрический радиус внутреннего постоянного электрического поля (заряда q - =-0.25e) - r q- = 2.45 10 -14 см.
Данные характеристики электрического поля протона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля протона в ближней зоне, равно как и саму структуру электрического поля протона в ближней зоне (на расстояниях порядка r p). Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+4/3e=+1.333e и -1/3e=-0.333e) в протоне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая положительно заряженная элементарная частица, независимо от величины спина и... .

Величины электрических радиусов для каждой элементарной частицы уникальны и определяются главным квантовым числом в полевой теории L, величиной массы покоя, процентом энергии заключенной в переменном электромагнитном поле (где работает квантовая механика) и структурой постоянной составляющей электромагнитного поля элементарной частицы (одинаковой для всех элементарных частиц с заданным главным квантовым числом L), генерирующей внешнее постоянное электрическое поле. Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.


6.3 Электрическое поле протона в ближней зоне

Зная величины электрических зарядов внутри элементарной частицы и их местоположение, можно определить и создаваемое ими электрическое поле.

электрического поля протона в ближней зоне (r~r p), в системе СИ, как векторная сумма, приблизительно равна:

Где n + = r + /|r + | - единичный вектор из ближней (1) или дальней (2) точки заряда протона q + в направлении точки наблюдения (А), n - = r - /|r - | - единичный вектор из ближней (1) или дальней (2) точки заряда протона q - в направлении точки наблюдения (А), r - расстояние от центра протона до проекции точки наблюдения на плоскость протона, q + - внешний электрический заряд +1.25e, q - - внутренний электрический заряд -0.25e, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости протона), r 0 - нормировочный параметр. (В системе СГС отсутствует множитель Множитель СИ .)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (+1.25e и -0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области протона, генерирующей его постоянные поля (при одновременном выполнении двух условий: ħ/m 0~ c
Потенциал электрического поля протона в точке (А) в ближней зоне (r~r p), в системе СИ приблизительно равен:

Где r 0 - нормировочный параметр, величина которого может отличаться от r 0 в формуле E. (В системе СГС отсутствует множитель Множитель СИ .) Данное математическое выражение не работает во внутренней (кольцевой) области протона, генерирующей его постоянные поля (при одновременном выполнении двух условий: ħ/m 0~ c
Калибровку r 0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля протона.

7 Масса покоя протона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и протона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя протона зависит от условий, в которых протон находится . Так поместив протон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе протона и его стабильности. Аналогичная ситуация возникнет при помещении протона в постоянное магнитное поле. Поэтому некоторые свойства протона внутри атомного ядра, отличаются от тех же свойств свободного протона в вакууме, вдали от полей.

8 Время жизни протона

Установленное физикой время жизни протона соответствует свободному протону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится . Поместив протон во внешнее поле (например, электрическое) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать знак внешнего поля так, чтобы внутренняя энергия протона увеличилась. Можно подобрать такую величину напряженности внешнего поля, что станет возможным распад протона в нейтрон позитрон и электронное нейтрино и следовательно протон станет нестабильным. Именно это наблюдается в атомных ядрах, в них электрическое поле соседних протонов запускает распад протона ядра. При внесении в ядро дополнительной энергии распады протонов могут начаться при меньшей напряженности внешнего поля.

Одна интересная особенность: во время распада протона в атомном ядре, в электромагнитном поле ядра из энергии электромагнитного поля рождается позитрон - из "вещества" (протон) рождается "антивещество" (позитрон)!!! и это никого не удивляет.

9 Правда о Стандартной модели

А теперь познакомимся с информацией, которую сторонники Стандартной модели не допустят к публикации на "полит-корректных" сайтах, (таких как мировая Википедия) на которых противники Новой физики могут безжалостно удалять (или искажать) информацию сторонников Новой физики, в результате чего ПРАВДА пала жертвой политики:

В 1964 году Гелл-манн и Цвейг независимо предложили гипотезу существования кварков, из которых, по их мнению, состоят адроны. Новые частицы были наделены дробным электрическим зарядом, не существующим в природе.
Лептоны в эту Кварковую модель, которая впоследствии переросла в Стандартную модель, НЕ вписались - поэтому были признаны истинно элементарными частицами.
Чтобы объяснить связь кварков в адроне, было предположено существование в природе сильного взаимодействия и его переносчиков - глюонов. Глюоны, как и положено в Квантовой теории, наделили единичным спином, тождественности частицы и античастицы и нулевой величиной массы покоя, как у фотона.
В действительности, в природе существует не сильное взаимодействие гипотетических кварков, а ядерные силы нуклонов - и это разные понятия.

Прошло 50 лет. Кварки так и не были найдены в природе и нам сочинили новую математическую сказочку под названием "Конфайнмент" . Мыслящий человек с легкостью увидит в ней откровенное игнорирование фундаментального закона природы - закона сохранения энергии. Но это сделает мыслящий человек, а сказочники получили устроившее их оправдание.

Глюоны также НЕ были найдены в природе. Дело в том, что единичным спином могут обладать в природе только векторные мезоны (и еще одно из возбужденных состояний мезонов), но у каждого векторного мезона имеется античастица. - Поэтому векторные мезоны на кандидаты в "глюоны" никак не подходят . Остается девятка первых возбужденный состояний мезонов, но 2 из них противоречат самой Стандартной модели и их существование в природе Стандартная модель не признает, а остальные неплохо изучены физикой, и выдать их за сказочные глюоны не получится. Есть еще последний вариант: выдать за глюон связанное состояние из пары лептонов (мюонов или тау-лептонов) - но и это при распаде можно вычислить.

Так что, глюонов в природе также нет, как нет в природе кварков и вымышленного сильного взаимодействия .
Вы считаете, что сторонники Стандартной модели этого не понимают - еще как понимают, вот только тошно признать ошибочность того, чем занимался десятилетиями. А потому мы видим новые математические сказки ("теорию" струн и т.д.).


10 Новая физика: Протон - итог

Я не стал в основной части статьи подробно говорить о сказочных кварках (со сказочными глюонами), поскольку их в природе НЕТ и нечего забивать голову сказками (без необходимости) - а без основополагающих элементов фундамента: кварков с глюонами рухнула стандартная модель - время ее господства в физике ЗАВЕРШИЛОСЬ (см. Стандартная модель).

Можно сколь угодно долго не замечать места электромагнетизма в природе (встречаясь с ним на каждом шагу: свет, тепловое излучение, электричество, телевидение, радио, телефонная связь, в том числе и сотовая, интернет, без которого человечество не узнало бы о существовании Полевой теории элементарных частиц, ...), и продолжать сочинять новые сказочки взамен обанкротившихся, выдавая их за науку; можно с упорством, достойным лучшего применения, продолжать повторять заученные СКАЗКИ Стандартной модели и Квантовой теории; но электромагнитные поля в природе были, есть, будут и прекрасно обходятся без сказочных виртуальных частиц, впрочем как и создаваемая электромагнитными полями гравитация, а вот у сказок есть время рождения и время, когда они перестают влиять на людей. Что касается природы, то ей НЕТ никакого дела до сказок, и любой иной литературной деятельности человека, даже если за них присуждается Нобелевская премия по физике. Природа устроена так, как она устроена, а задача ФИЗИКИ-НАУКИ понять и описать это.

Теперь перед Вами открылся новый мир - мир дипольных полей, о существовании которых физика 20 века и не подозревала . Вы увидели, что у протона имеются не один, а два электрических заряда (внешний и внутренний) и соответствующие им два электрических радиуса. Вы увидели, из чего складывается масса покоя протона и что воображаемый бозон Хиггса оказался не у дел (решения Нобелевского комитета - это еще не законы природы...). Более того, величина массы и время жизни зависят от полей, в которых находится протон. Из того, что свободный протон стабилен, еще не следует, что он будет оставаться стабильным всегда и везде (распады протона наблюдаются в атомных ядрах). Все это выходит за рамки представлений, господствовавших в физике второй половины двадцатого века. - Физика 21 века - Новая физика переходит на новый уровень познания материи , а нас ждут новые интересные открытия.

Владимир Горунович