ГАЗ-53 ГАЗ-3307 ГАЗ-66

Эдс автомобильного аккумулятора от плотности электролита. Электрические характеристики аккумуляторных батарей. Электродвижущая сила аккумулятора

Аккумуляторные батареи заполнены серной кислотой и в процессе нормального цикла заряда-разряда в них выделяются взрывоопасные газы (водород и кислород). Во избежание травмирования персонала или повреждения автомобиля неукоснительно соблюдайте следующие правила техники безопасности:

  1. Перед тем как приступать к работе с любыми электрическими компонентами автомобиля, отсоедините кабель питания от минусовой клеммы аккумулятора. При отсоединенном минусовом кабеле питания все электрические цепи в автомобиле будут разомкнуты, что обеспечит предотвращение случайного замыкания любого электрического компонента на массу. Электрическая искра создает потенциальную опасность травмирования и возникновения возгорания.
  2. Любые работы, связанные с аккумуляторной батареей, должны выполняться в защитных очках.
  3. Для защиты от попадания серной кислоты, которой заполнена аккумуляторная батарея, на кожу используйте защитную одежду.
  4. Не нарушайте указанных в процедурах технического обслуживания правил техники безопасности при обращении с оборудованием, используемым для технического обслуживания и испытания аккумуляторных батарей.
  5. Категорически запрещается курить или использовать открытый огонь в непосредственной близости от аккумуляторной батареи.

Текущее обслуживание аккумуляторной батареи

Текущее техническое обслуживание аккумуляторной батареи заключается в проверке чистоты корпуса аккумуляторной батареи и, при необходимости, добавлении в нее чистой воды. Все производители аккумуляторных батарей рекомендуют использовать для этой цели дистиллированную воду, но в случае ее отсутствия можно использовать чистую питьевую воду с низким содержанием солей. Поскольку вода - это единственный расходуемый компонент аккумуляторной батареи, доливать в аккумуляторную батарею кислоту не допускается. Часть воды из электролита улетучивается в процессе заряда и разряда аккумуляторной батареи, но кислота, содержащаяся в электролите, остается в аккумуляторной батарее. Не переполняйте аккумуляторную батарею электролитом, потому что в таком случае нормальный барботаж (газообразование), возникающий в электролите в процессе работы аккумуляторной батареи, приведет к утечке электролита, вызывающей коррозию клемм аккумуляторной батареи,ее кронштейнов крепления и поддона. Аккумуляторные батареи следует заполнять электролитом до уровня примерно на полтора дюйма (3,8 см) ниже верха заливной горловины.

Контакты кабелей питания, подключаемых к аккумуляторной батарее, и клеммы самой аккумуляторной батареи необходимо осмотреть и очистить во избежание падения напряжения на них. Одной из распространенных причин того, что двигатель не заводится, является ослабление или коррозия контактов кабелей питания, подсоединенных к клеммам аккумуляторной батареи.

Рис. Сильно корродированная клемма аккумуляторной батареи

Рис. Было обнаружено, что этот кабель питания, подсоединенный к аккумуляторной батарее, сильно корродирован под изоляцией. Хотя коррозия насквозь разъела изоляцию, но оставалась незамеченной до тех пор, пока кабель не был тщательно осмотрен. Этот кабель подлежит замене

Рис. Тщательно проверьте все клеммы аккумуляторной батареи на наличие признаков коррозии. В этом автомобиле два кабеля питания присоединены к плюсовой клемме аккумуляторной батареи с помощью длинного болта. Это - распространенная причина коррозии, которая вызывает нарушение электрического пуска двигателя

Измерение ЭДС аккумуляторной батареи

Электродвижущая сила (ЭДС) — это разность потенциалов положительного и отрицательного электродов аккумулятора при разомкнутой внешней цепи.

Величина ЭДС зависит, главным образом, от электродных потенциалов, т.е. от физических и химических свойств веществ, из которых изготовлены пластины и электролит, но не зависит от размеров пластин аккумулятора. ЭДС кислотного аккумулятора зависит также от плотности электролита.

Измерение электродвижущей силы (ЭДС) аккумуляторной батареи с помощью вольтметра является простым способом определения степени ее заряженности. ЭДС аккумуляторной батареи не является показателем, который гарантирует работоспособность аккумуляторной батареи, но этот параметр полнее характеризует состояние аккумуляторной батареи, чем просто ее осмотр. Аккумуляторная батарея, которая по внешнему виду вполне работоспособна, на самом деле может оказаться не такой хорошей, как кажется.

Эта проверка называется измерением напряжения в режиме холостого хода (проверкой ЭДС) аккумуляторной батареи потому, что измерение проводится на клеммах аккумуляторной батареи без подключенной к ней нагрузки, при нулевом токе потребления.

  1. Если проверка производится сразу же по окончании зарядки аккумуляторной батареи или в автомобиле по окончании поездки, перед измерением необходимо освободить аккумуляторную батарею от ЭДС поляризации. ЭДС поляризации - это повышенное, по сравнению с нормальным, напряжение, которое возникает только на поверхности аккумуляторных пластин. ЭДС поляризации быстро исчезает, когда аккумуляторная работает под нагрузкой, поэтому она не дает точной оценки степени заряженности аккумуляторной батареи.
  2. Для освобождения аккумуляторной батареи от ЭДС поляризации включите фары в режим дальнего света на одну минуту, а затем, выключите их и подождите пару минут.
  3. При выключенном двигателе и всем остальном электрооборудовании, при закрытых дверях (чтобы был выключен свет в салоне), подключите вольтметр к клеммам аккумуляторной батареи. Красный, плюсовой, провод вольтметра подсоедините к плюсовой клемме аккумуляторной батареи, а черный, минусовой, провод - к ее минусовой клемме.
  4. Зафиксируйте показание вольтметра и сравни те его с таблицей степени заряженности аккумуляторной батареи. Приведенная ниже таблица подходит для оценки степени заряженности аккумуляторной батареи по величине ЭДС при комнатной температуре - от 70°Ф до 80°Ф (от 21 °С до 27°С).

Таблица

ЭДС аккумуляторной батареи (В) Степень заряженности
12,6 В и выше Заряжена на 100%
12,4 Заряжена на 75%
12,2 Заряжена на 50%
12 Заряжена на 25%
11,9 и ниже Разряжена

Рис. Вольтметр показывает напряжение аккумуляторной батареи через одну минуту после включения фар (а). После выключения фар напряжение, измеренное на аккумуляторной батарее, быстро восстановилось до 12,6 В (б)

ПРИМЕЧАНИЕ

Если вольтметр выдает отрицательное показание, то, либо аккумуляторная батарея заряжена в обратной полярности (и тогда подлежит замене), либо вольтметр подключен к аккумуляторной батарее в обратной полярности.

Измерение напряжения аккумуляторной батареи под нагрузкой

Одним из наиболее точных способов определения работоспособности аккумуляторной батареи является измерение напряжения аккумуляторной батареи под нагрузкой. В большинстве тестеров пусковых и зарядных характеристик автомобильных аккумуляторных батарей в качестве нагрузки аккумуляторной батареи используется угольный реостат. Параметры нагрузки определяются номинальной емкостью проверяемой аккумуляторной батареи. Номинальная емкость аккумуляторной батареи характеризуется величиной пускового тока, который способна обеспечить аккумуляторная батарея при температуре 0°Ф (-18°С) в течение 30 секунд. Ранее использовалась характеристика номинальной емкости аккумуляторных батарей в ампер-часах. Измерение напряжения аккумуляторной батареи под нагрузкой производится при величине разрядного тока, равной половине номинального ССА тока аккумуляторной батареи или утроенной номинальной емкости аккумуляторной батареи в ампер-часах, но не менее 250 ампер. Измерение напряжения аккумуляторной батареи под нагрузкой производится после проверки степени ее заряженности по встроенному ареометру или путем измерения ЭДС аккумуляторной батареи. Аккумуляторная батарея должна быть заряжена не менее чем на 75%. К аккумуляторной батарее подключают соответствующую нагрузку и по истечении 15 секунд работы аккумуляторной батареи под нагрузкой фиксируют показания вольтметра при подключенной нагрузке. Если аккумуляторная батарея - хорошая, то показание вольтметра должны оставаться выше 9,6 В. Многие производители аккумуляторных батарей рекомендуют проводить измерение дважды:

  • первые 15 секунд работы аккумуляторной батареи под нагрузкой используются для освобождения от ЭДС поляризации
  • вторые 15 секунд - для получения более достоверной оценки состояния аккумуляторной батареи

Между первым и вторым циклом работы под нагрузкой необходимо сделать выдержку в 30 секунд, чтобы дать аккумуляторной батарее время на восстановление.

Рис. Тестер пусковых и зарядных характеристик автомобильных аккумуляторных батарей, выпущенный компанией Bear Automotive, автоматически включает проверяемую аккумуляторную батарею в режим работы под нагрузкой в течение 15 секунд - для удаления ЭДС поляризации, затем отключает нагрузку на 30 секунд для восстановления аккумуляторной батареи и снова подключает нагрузку на 15 секунд. На дисплей тестера выводится информация о состоянии аккумуляторной батареи

Рис. Тестер VAT 40 (вольтамперметр, модель 40) компании Sun Electric, подключенный к аккумуляторной батарее для испытаний под нагрузкой. Оператор с помощью регулятора тока нагрузки устанавливает по показанию амперметра величину тока разряда, равную половине номинального ССА тока аккумуляторной батареи. Аккумуляторная батарея работает под нагрузкой в течение 15 секунд и по окончании этого интервала времени напряжение аккумуляторной батареи, измеренное при подключенной нагрузке, должно быть не ниже 9,6 В

ПРИМЕЧАНИЕ

Некоторые тестеры для определения степени заряженности и работоспособности аккумуляторной батареи измеряют емкость аккумуляторной батареи. Соблюдайте процедуру проверки, установленную производителем испытательного оборудования.

Если аккумуляторная батарея не прошла испытания под нагрузкой, подзарядите ее и повторите проверку. В случае если вторая проверка закончилась неудачно, аккумуляторная батарея подлежит замене.

Зарядка аккумуляторной батареи

Если аккумуляторная батарея сильно разряжена, ее необходимо подзарядить. Зарядку аккумуляторной батареи, во избежание ее повреждения вследствие перегрева, лучше всего производить в стандартном режиме зарядки. Пояснения, касающиеся стандартного режима зарядки аккумуляторной батареи, приведены на рисунке.

Рис. Это устройство для зарядки аккумуляторных батарей отрегулировано на зарядку аккумуляторной батареи номинальным зарядным током 10 А. Зарядка аккумуляторной батареи в стандартном режиме, как на приведенной фотографии, не так сильно действует на аккумуляторную батарею, как режим ускоренной зарядки, в котором не исключается перегрев аккумуляторной батареи и коробление аккумуляторных пластин

Необходимо помнить о том, что для зарядки полностью разряженной аккумуляторной батареи может потребоваться часов восемь, а то и более. Первоначально необходимо в течение 30 минут поддерживать зарядный ток на уровне около 35 А - для того, чтобы облегчить начало процесса зарядки аккумуляторной батареи. В режиме ускоренной зарядки аккумуляторной батареи происходит ее усиленный нагрев и возрастает опасность коробления аккумуляторных пластин. В режиме ускоренной зарядки происходит также усиленное газообразование (выделение водорода и кислорода), что создает опасность для здоровья и опасность возгорания. Температура аккумуляторной батареи не должна выходить за пределы 125°Ф (52°С, аккумуляторная батарея - горячая на ощупь). Зарядку аккумуляторных батарей рекомендуется, как правило, производить зарядным током, равным 1% паспортного значения ССА-тока.

  • Режим ускоренной зарядки — максимум 15 А
  • Стандартный режим зарядки — максимум 5 А

Это может произойти с каждым!

Владелец автомобиля Toyota отключил аккумуляторную батарею. После подключения новой аккумуляторной батареи владелец заметил, что на приборной панели загорелась желтая лампочка сигнализации «подушка безопасности», а радиоприемник заблокировался. Владелец приобрел подержанный автомобиль у дилера и не знал секретного четырехзначного кода, необходимого для разблокирования радиоприемника. Вынужденный искать способ решения этой проблемы, он наугад попробовал ввести три разных четырехзначных числа в надежде, что одно из них подойдет. Однако после трех неудачных попыток радиоприемник полностью отключился.

Расстроенный владелец обратился к дилеру. Устранение возникшей проблемы обошлось более чем в триста долларов. Для сброса сигнализации «подушка безопасности» потребовался специальный прибор. Радиоприемник пришлось вынуть из автомобиля и отослать в другой штат, в авторизованный сервисный центр, а по возвращении заново установить в автомобиле.

Поэтому, прежде чем отключать аккумуляторную батарею, обязательно согласуйте это с владельцем автомобиля - вы должны убедиться в том, что владельцу известен секретный код включения закодированного радиоприемника, который одновременно используется в системе охраны автомобиля. Может потребоваться использование устройства резервного питания памяти радиоприемника при отключенной аккумуляторной батарее.

Рис. Вот удачная мысль. Техник сделал источник резервного питания памяти из старого аккумуляторного фонарика и кабеля с переходником к гнезду прикуривателя. Он просто подсоединил провода к выводам аккумулятора имевшегося у него аккумуляторного фонарика. Аккумулятор фонарика использовать удобней, чем обычную 9-вольтовую батарейку - на случай, если кому-то придет в голову открыть дверь автомобиля в то время, когда источник резервного питания памяти будет включен в цепь. 9-вольтовая батарейка, имеющая небольшую емкость, в этом случае быстро бы разрядилась, в то время как емкость аккумулятора фонарика достаточно велика и ее хватит на то, чтобы даже при включении освещения салона обеспечить необходимое питание памяти


Выражаю искреннюю благодарность Кувалде (Kuvalda.spb.ru Ушкалов Евгений Юрьевич)
за поддержку и побудительство меня: тряхнуть стариной, вспомнить,
что я все-таки физик и химик, и взяться за старое:

Прежде всего, считаю долгом отметить, что (не смотря на мои старания) нижеприведенные соображения основаны на фундаментальных науках, а потому требуют все же некоторых усилий для осмысления. Не желающим прилагать эти усилия, а также тем, кто путает напряжение и емкость, читать не рекомендуется - берегите себя!

Для ясности изложения, и не желая перегружать текст слишком сложными понятиями термодинамики и химической кинетики, далеко выходящими за рамки общих курсов физики и химии технических вузов, я позволю себе некоторые упрощения (во всех случаях корректные), которые (ни в коем случае) не будут противоречить истине - заранее приношу свои извинения перфекционистам. Точные выкладки все желающие могут исполнить самостоятельно - вся необходимая литература имеется в любой научно-технической библиотеке

Путаница

Мои дискуссии на страницах уазовской конфы, ясно продемонстрировали, что не все участники автомобилизации страны ясно представляют себе что же такое аккумуляторная батарея. Чтобы быть понятым верно, постараюсь определить понятия с которыми буду иметь дело.

Батарея (АКБ)

Набор ячеек (банок), соединеных последовательно в количестве шести. В тексте на правах синонимов используются слова "аккумулятор" и АКБ.
Ячейка, она же "банка" -- элементарный элемент аккумулятора, состоящий как минимум (реально более 10) из одной пары активных пластин Pb - PbO2, залитых электролитом.

Напряжение

То, что измеряется на клеммах АКБ путем подключения тестера или напряжеметром, который находится на приборной панели. Исключительно внешняя характеристика. Зависит от множества факторов, как внешних по отношению к АКБ, так и внутренних.

В общем то, напряжение это единственная нормально измеряемая величина, ассоциированная с АКБ. Ничего другого нормально померить не удается. Ни емкость. Ни реальный ток. Ни внутреннее сопротивление, ни ЭДС

ЭДС

Сугубо внутренняя характеристика ячейки АКБ, к сожалению самым драматическим образом влияющая на внешние проявления АКБ.

Величина ЭДС определяется равновесным состоянием реакции основных реагентов. В нашем случае это Pb+PbO2+2H2SO4(-)+2H(+) = 2PbSO4+2H2O.

Определить ее формально достаточно сложно - для этого требуется применение сложных термодинамических расчетов термодинамического состояния системы, но в инженерной практике применяется инженерная формула, обеспечивающая инженерную точность для свинцовых аккумуляторов в диапазоне плотностей электолита 1.1-1.3 кг/л E=0.85+P где Р - плотность электолита.

Применяя ее для определения ЭДС при стандартном значении плотности электролита автомобильного аккумулятора 1.27 получаем значение 2.12В на банку или 12.7В на АКБ.
Для перфекционистов. Искать здесь размерность бессмысленно - как в большинстве формул для упрощенных инженерных рассчетов.

В практическом смысле эта формула нам еще пригодится.
С точностью, нас тут интересующей, никакие другие факторы на величину ЭДС не влияют. Зависимость ЭДС от температуры оценивается тысячными вольта на градус, чем очевидно можно пренебречь.
Все легирующие добавки и прочее серебро действительно улучшают эксплуатационные характеристики (повышают стабильность, увеличивают срок службы, снижают внутреннее сопротивление) но не влияют на ЭДС.

К сожалению, в современном аккумуляторе померить ее можно только косвенно и с известными допущениями. Например, допуская, что токи утечки равны нулю (то есть АКБ чистый и сухой снаружи, не имеет трещин и протечек внутри между банками, что в электролите нет солей металлов, а сопротивление измерительного прибора бесконечно).

Для измерений с интересующей нас точностью, достаточно просто отсоединить АКБ от всех потребителей (снять клемму) и воспользоваться цифровым мультиметром (тут надо иметь в виду, что класс точности большинства этих приборов не позволяет определить истинное значение, делая их пригодными лишь для относительных измерений).

Внутреннее сопротивление

Величина играющая ключевую роль в нашем восприятии действительности АКБ.
Именно благодаря ему, точнее его увеличению, происходят все неприятности, связанные с АКБ.

Упрощенно это можно представить как подключенный последовательно с аккумулятором резистор, некоторого сопротивления:

Величина, которую невозможно не пощупать, ни померить. Зависит она от конструктивных особенностей АКБ, емкости, степени его разряженности, наличию сульфатации пластин, внутренних обрывов, концентрации электролита и его количества и, конечно же, температуры. К сожалению, внутреннее сопротивление зависит не только от "механических" параметров, но и от тока, при котором работает АКБ.

Чем АКБ больше, тем внутреннее сопротивление меньше. У новой АКБ 70-100 Ач величина внутреннего сопротивления около 3-7 мОм (при нормальных условиях).

При понижении температуры скорость обмена химических реакций падает, а внутреннее сопротивление, соответственно, возрастает.

У нового аккумулятора внутреннее сопротивление самое маленькое. В основном оно определяется конструкцией токонесущих элементов и их сопротивлением. Но в процессе эксплуатации начинают накапливаться необратимые изменения - уменьшается активная поверхность пластин, появляется сульфатация, изменяются свойства электролита. И сопротивление начинает возрастать.

Ток утечки

Присутствует в аккумуляторе любого типа. Бывает внутренним и внешним .

Внутренний ток утечки невелик и для современной батареи 100Ач составляет около 1 мА (примерно эквивалентно потери 1% емкости в месяц) Его величина определяется чистотой электролита, особенно степенью загрязненности его солями металлов.

Надо заметить, что внешние токи утечки через бортовую сеть автомобиля, существенно выше внутренних исправного АКБ.

Процессы

Нежелающие "вдаваться" могут пропустить этот раздел и перебраться прямо к разделу

Разряд аккумулятора

При разряде аккумулятора генерируется ток за счет осаждения SO4 на пластинах, в связи с чем снижается концентрация электролита и постепенно повышается внутреннее сопротивление.

Характеристики разряда АКБ.
Верхняя кривая соответствует току десятичасового разряда
Нижняя - трехчасового

При полном разряде практически вся активная масса превращается в сернокислый свинец. Именно поэтому долгое пребывание в состоянии разрядки губительно для аккумулятора. Чтобы избежать сульфатации необходимо как можно быстрее провести зарядку батареи.

При этом, чем больше в АКБ электролита (относительно массы свинца) тем меньше снижается ЭДС ячейки. Для разряженного на 50% аккумулятора падение ЭДС составляет около 1%. Кроме того, "запас" электролита у разных производителей разный, поэтому и снижение ЭДС, равно как и плотности электролита будет отличаться.

Из-за незначительного снижения ЭДС практически невозможно определить степень разряженности батареи, просто измеряя напряжение на ней (для этого существуют нагрузочные вилки, задающие значительный ток). Особенно применяя штатный напряжеметр (прибор это не является вольтметром в точном понимании этого слова - скорее индикатором напряжения) автомобиля.

Максимальный ток, который способна обеспечить батарея в основном зависит от активной поверхности пластин, а ее емкость от активной массы свинца. При этом более толстые пластины могут быть даже менее эффективны, поскольку "внутренние слои свинца при этом трудно сделать "активными". Кроме того, требуется дополнительный электролит.
Чем более пористой ухитрился сделать производитель пластину, тем больший ток она способна обеспечить.

Поэтому все батареи, построенные по сходной технологии обеспечивают примерно одинаковые стартовые токи, но более тяжелые могут обеспечить большую емкость при сопоставимых размерах.

Зарядка Батареи

Процесс зарядки батареи состоит в электрохимическом разложении PbSO4 на электродах под воздействием постоянного тока внешнего источника.
Процесс заряда полностью разряженной батареи похож на процесс разряда как бы "перевернутый" вверх ногами.

Первоначально ток заряда ограничен лишь способностью источника генерировать необходимый ток и сопротивлением токонесущих элементов. Теоретически он ограничен только кинематикой процесса растворения (скоростью с которой продукты реакции выводятся из активной зоны). Затем, по мере "растворения" молекул серной кислоты, ток снижается.

Если бы можно было пренебречь побочными процессами, при полной зарядке батареи ток стал бы равен нулю. Аккумулятор перестает "принимать" заряд. К сожалению в реальной батарее всегда есть ток утечки и вода. Для компенсации тока утечки применяется постоянный подзаряд батареи.

Стандартно свинцовую АКБ рекомендуют заряжать используя источник напряжения.
Рекомендуемое напряжении заряда на одну ячейку (по данным VARTA) составляет приблизительно 2.23В или 13.4В на всю батарею. Более высокое напряжение заряда приводит к более быстрому накоплению заряда, но одновременно увеличивает количество разлагаемой воды.

Легенда:
"Перезаряженный" аккумулятор портится и теряет емкость.

Действительно Ni-Cd аккумуляторы портятся (теряют емкость) при длительном перезаряде, чего не происходит со свинцовыми. Свинцовые при заряде большими напряжениями только теряют воду (выкипает именно вода) - в широких пределах процесс полностью обратим простым добавлением воды. При длительным подзаряде "правильным" напряжением (2.23В) потерь воды не происходит.

К счастью для нас, свинцовый аккумулятор не портится в режиме непрерывного подзаряда. Напротив, этот режим всячески поощряется и рекомендуется. Поэтому на автомобиле (и во всех прочих случаях промышленного использования) свинцовые АКБ находятся в режиме постоянной подзарядки при напряжениях в пределе 2.23 - 2.4В на ячейку.

Из рисунка видно, что при увеличении избыточного напряжения на аккумуляторе в два раза, ток подзаряда возрастает в десять раз, что приводит к неоправданному расходу воды и преждевременному выходу АКБ из строя.

Для современного аккумулятора ток оптимальный ток подзаряда около 15 мА (что как раз и соответствует напряжению подзаряда в 2.23В на ячейку). При таком токе вода, разлагающаяся при электролизе, "успевает" рекомбинировать в растворе и не теряется - то есть процесс может продолжаться бесконечно долго (в инженерном смысле).

Практика

Напряжение на АКБ

Многие путают напряжение на батарее с ЭДС аккумулятора. Как уже отмечалось, эти величины взаимосвязаны, но не тождественны. Тут колоссальную роль играет внутреннее сопротивление.

Например при разряде стартерными токами, обозначенными порядка 400 А, внутреннее сопротивление в 4 мОм в соответствии с законом Ома превращается в падение напряжения в 1.6 В, сопротивление поляризации добавляет еще около 0.5В - и это в самом начале разряда. Приведенные данные соответствуют новым АКБ емкостью порядка 100 Ач. Для старых, устаревших батарей или батарей меньшей емкости потери будут больше. Для батареи в 50 Ач того же типа потер приблизительно вдвое больше.

При заряде от генератора (который прикидывается источником напряжения, на самом деле являясь источником тока, придушенным регулятором), напряжение должно соответствовать условиям быстрого подзаряда и определяется реле регулятором.

Поскольку средний пробег автомобиля недостаточен для полной зарядки аккумулятора, применяется компромиссное значение напряжения, несколько превышающее оптимальное значение подзаряда в 2.23В на банку или 13.38 на батарею, но несколько меньшее, чем напряжение быстрой подзарядки в 2.4В (14.4В на батарею). Оптимальным считается значение 13.8-14.2В. При этом потери воды остаются приемлемыми, а аккумулятор получает достаточно полный заряд при среднестатистическом пробеге.

Старение (разряд) АКБ приводит к тому, что напряжение, которое он способен обеспечить под нагрузкой падает за счет больших потерь на внутреннем сопротивлении, при том, что без нагрузки его значение остается практически тождественным новому (полностью заряженному). Поэтому определить состояние АКБ просто вольтметром практически не представляется возможным.

Разные типы батарей могут иметь разные плотности электролита. При этом ЭДС (и соответственно напряжение разомкнутого аккумулятора) может несколько отличаться для разных батарей. При этом разряженная батарея с большей плотностью электролита может выдавать большее значение напряжения, чем полностью заряженная батарея с меньшей плотностью электролита.

Легенда:
Напряжение на АКБ зависит от температуры.

Напряжение отсоединенного аккумулятора практически не зависит от температуры. Зависит внутреннее сопротивление и количество запасенной энергии. Стартер плохо крутит по причине большого падения напряжения на внутреннем сопротивлении, а ограничение времени работы стартера связано с пониженной емкостью аккумулятора из за сниженной активности химических реакций.

Соединение АКБ

Именно эта тема и вынудила меня взяться за этот масштабный труд. Выводы, представленные тут, основаны на аргументации, приведенной выше. Практические выводы аргументации не требуют.

Легенда 1
Автомобильные аккумуляторы соединять параллельно нельзя, поскольку при этом аккумулятор, обладающий большим напряжением будет постоянно дозаряжать аккумулятор с меньшим напряжением. Соответственно один будет постоянно перезаряжен, а другой разряжен.

В этой легенде присутствует несколько фактических и понятийных ошибок.

Ячейка АКБ образуется несколькими парами (или несколькими десятками пар) пластин, срединными параллельно для повышения эффективной поверхности элемента. Так что параллелизм заложен в основе технологии аккумулятора.

Напряжение на аккумуляторе при отсутствии нагрузке условно равно его ЭДС.
Как известно, величина ЭДС практически не зависит ни от каких внешних и внутренних параметров, кроме плотности электролита. Эта величина не зависит ни от емкости АКБ, ни от пористости электрода, ни от легирующих добавок, ни от материала токоведущих частей. Также слабо она зависит от степени разряженности батареи. Поэтому напряжение двух свинцовых автомобильных аккумуляторов, соответствующих нормам будет всегда близким . Технологическая разница, возникающая за счет неточности плотности электролита (1.27-1.29 по ГОСТ, допуски VARTA на порядок меньше) может быть легко определена (см. выше) и составляет 0.02В, то есть 20 мВ.

Если считать, что в момент прекращения заряда (выключения двигателя) оба аккумулятора полностью заряжены, максимально возможная разность потенциалов на их клеммах составит 20 мВ, независимо от их состояния, производителя и проч.

Даже если предположить, что используются АКБ разных классов (например автомобильная и промышленна с плотностью электролита 1.25), то и в этом случае разность потенциалов составить лишь около 40 мВ. Для полностью заряженной батареи это приведет к возникновению тока электролиза порядка 3-5 мА, что примерно соответствует току утечки не очень хорошего аккумулятора.

Разряд такими токами для батареи несущественен, а перезаряд не наступает.

Теперь рассмотрим ситуацию, когда параллельно объединены два аккумулятора существенно разной емкости.

В начале зарядки, когда ток ограничен возможностями генератора, естественно предположить, что он поделится между батареями пропорционально активной площади пластин. То есть степень заряженности аккумуляторов при неполном заряде будет примерно одинаковой (коротком пробеге).. Система будет себя вести как большой аккумулятор, который не успел дозарядиться.

Легенда 2
В импортных автомобилях используют специальные реле для подключения батарей дополнительного оборудования (Auxiliary), чтобы не соединять их параллельно (Легенда 1)

Полная чушь, имея ввиду вышесказанное. Это реле служит для куда более прозаичной цели. При большой нагруженности электросистемы автомобиля дополнительным оборудованием (типа телевизор, музыка большой мощности, холодильник и проч), существует большая вероятность "посадить" аккумулятор. Для того, чтобы после того, как весело провел день на природе под музыку, все таки уехать, стартерную батарею отключают, избегая тем самым ее глубокого разряда.
Есть старый анекдот про наших ментов, которые всласть "настрелявшись" радаром суетились "прикурить":

Так вот этот эффект куда значительнее, чем "перезарядки".

Практические выводы

Параллельно соединять аккумуляторы возможно, но учитывая следующие рекомендации.

    • Не стоит использовать АКБ разных классов (например автомобильные и промышленные), а так же различных исполнений (например тропического и арктического) поскольку они используют электролит разной плотности.
    • При длительной стоянке стоит отключать АКБ не только от потребителей, но и друг от друга.

Электродвижущая сила.

ЭДС аккумулятора представляет собой разность электродных потенциалов, измеренную при разомкнутой внешней цепи. Электродный потенциал при ра­зомкнутой внешней цепи состоит из равновесного электродного потенциала и потенциала поляризации. Равновесный электродный потенциал характеризует состояние электрода при отсутствии переходных процессов в электрохимиче­ской системе. Потенциал поляризации определяется как разность между потен­циалом электрода при заряде и разряде и его потенциалом при разомкнутой внешней цепи. Электродная поляризация сохраняется в аккумуляторе и при отсутствии тока после отключения на­грузки от зарядного устройства. Это связано с диффузионным процессом выравнивания концентрации электро­лита в порах электродов и пространст­ве аккумуляторных ячеек. Скорость диффузии невелика, поэтому затуха­ние переходных процессов происходит в течение нескольких часов и даже су­ток в зависимости от температуры электролита. Учитывая наличие двух составляющих электродного потенци­ала при переходных режимах, разли­чают равновесную и неравновесную ЭДС аккумулятора.

Равновесная ЭДС свинцового акку­мулятора зависит от химических и фи­зических свойств активных веществ и концентрации их ионов в электролите.

На величину ЭДС влияет плотность электролита и очень незначительно темпе­ратура. Изменение ЭДС в зависимости от;тампературы составляет менее

3·10 -4 В/град. Зависимость ЭДС от плотности электролита в диапазоне 1,05-1,30 г/см 3 выглядит в виде формулы:

где Е - ЭДС аккумулятора, В;

р - приведенная к температуре 5°С плотность электролита, г/см".

С повышением плотности электролита ЭДС возрастает (рис 3.1). При рабочих плотностях электролита 1,07-1,30 г/см 3 ЭДС не дает точного представления о степени разряженности аккумулятора, так как ЭДС разряжен­ного аккумулятора с электролитом большей плотности будет выше.

ЭДС не зависит от количества заложенных в аккумулятор активных матери­алов и от геометрических размеров электродов. ЭДС аккумуляторной батареи увеличивается пропорционально числу последовательно включенных аккуму­ляторов m: Е АКБ = m Е А.

Плотность электролита в порах электродов и в моноблоке одинакова у акку­муляторов, находящихся в состоянии покоя. Этой плотности соответствует ЭДС покоя. Вследствии поляризации пластин и изменения концентрации электроли­га в порах электродов относительно концентрации электролита в моноблоке, ЭДС при разряде меньше, а при заряде больше ЭДС покоя. Основной причиной изменения ЭДС в процессе разряда или заряда является изменение плотности электролита, участвующего в электрохимических процессах.

Рис. 3.1. Изменение равновесной ЭДС и элек­тродных потенциалов свинцового аккумулято­ра в зависимости от плотности электролита:

1- ЭДС; 2 - потенциал положительного электро­да; 3 - потенциал отрицательного электрода.

Напряжение.

Напряжение аккумулятора отличается от его ЭДС на величину падения на­пряжения во внутренней цепи при прохождении разрядного или зарядного то­ка. При разряде напряжение на выводах аккумулятора меньше ЭДС, а при за­ряде больше.

Разрядное напряжение

U p = E – I p · r = E – E n – I p · r o ,

где En - ЭДС поляризации, В;

I р - сила разрядного тока, А;

r- полное внутреннее сопротивление, Ом;

r o - омическое сопротивление аккумулятора, Ом. Зарядное напряжение

U з = E + I з · r = Е + Е n + I з · r o ,

где I з - сила зарядного тока, А.

ЭДС поляризации связана с изменением электродных потенциалов при про­хождении тока и зависит от разности концентраций электролита между элект­родами и в порах активной массы электродов. При разряде потенциалы элект­родов сближаются, а при заряде раздвигаются.

При постоянной силе разрядного то­ка в единицу времени расходуется оп­ределенное количество активных ма­териалов. Плотность электролита уменьшается по линейному закону (рис. 3.2, а). В соответствии с изменением плотности электролита уменьшается ЭДС и напряжение аккумулятора. К концу разряда сернокислый свинец за­крывает поры активного вещества электродов, препятствуя притоку электролита из сосуда и увеличивая электросопротивление электродов.

Равновесие нарушается и напряжение начинает резко падать. Аккумуляторные батареи разряжаются только до конечного напряжения Uк.p., соответствующего перегибу разрядной характеристики Up=f(τ). Разряд прекращается, хотя актив­ные материалы израсходованы не полностью. Дальнейший разряд вреден для аккумулятора и не имеет смысла, так как напряжение становится неустойчивым.

Рис. 3.2 . Характеристики свинцового аккумулятора:

а - разрядная, б - зарядная.

После отключения нагрузки напряжение аккумулятора повышается до значе­ния ЭДС, соответствующего плотности электролита в порах электродов. Затем в течение некоторого времени ЭДС возрастает по мере выравнивания концентра­ции электролита в порах электродов и в объеме аккумуляторной ячейки за счет диффузии. Возможность повышения плотности электролита в порах электродов во время непродолжительного бездействия после разряда используется при пу­ске двигателя. Пуск рекомендуется осуществлять отдельными кратковременны­ми попытками с перерывами в 1-1,5 мин. Прерывистый разряд способствует так­же лучшему использованию глубинных слоев активных веществ электродов.

В режиме заряда (рис. 3.2, б) напряжение Uз на выводах аккумулятора воз­растает вследствие внутреннего падения напряжения и повышения ЭДС при увеличении плотности электролита в порах электродов. При возрастании на­пряжения до 2,3 В активные вещества восстанавливаются. Энергия заряда идет на разложение воды на водород и кислород, которые выделяются в виде пу­зырьков газа. Газовыделение при этом напоминает кипение. Его можно умень­шить за счет снижения к концу разряда величины зарядного тока.

Часть положительных ионов водорода, выделяющихся на отрицательном электроде, нейтрализуются электронами. Избыток ионов накапливается на по­верхности электрода и создает перенапряжение до 0,33 В. Напряжение в конце заряда повышается до 2,6-2,7 В и при дальнейшем заряде остается неизменным. Постоянство напряжения в течение 1-2 ч заряда и обильное газовыделение яв­ляются признаками конца заряда.

После отключения аккумулятора от зарядного устройства напряжение падает до значения ЭДС, соответствующе­го плотности электролита в порах, а затем снижается, пока выравниваются плотности электролита в порах пла­стин и в аккумуляторном сосуде.

Напряжение на выводах аккумуля­торной батареи при разряде зависит от силы разрядного тока и температуры электролита.

При увеличении силы разрядного тока Iр напряжение снижается быст­рее вследствие большей разности концентраций электролита в аккумуляторном сосуде и в порах электродов, а также большего внут­реннего падения напряжения в бата­рее. Все это приводит к необходимости более раннего прекращения разряда батареи. Во избежание образования на электродах крупных нерастворимых кристаллов сульфата свинца разряд батарей прекращают при конечном на­пряжении 1,75 В на одном аккумулято­ре.

При понижении температуры увели­чивается вязкость, удельное электросопротивление электролита и умень­шается скорость диффузии электро­лита из аккумуляторного сосуда в по­ры активных веществ электродов

Внутреннее сопротивление.

Полным внутренним сопротивлением АКБ называют сопротивление, оказываемое прохождению через АКБ постоянного разрядного или зарядного тока:

r = r 0 + E П / I Р = r 0 + r П,

где r 0 – омическое сопротивление электродов, электролита, сепараторов и вспомогательных токоведущих деталей (мосты, борны, перемычки); r П – сопротивление поляризации, которое появляется вследствие изменений электродных потенциалов при прохождении электрического тока.

Рис. 3.3. Зависимость удельной электропро­водности электролита от плотности при тем­пературе 20°С.

Электропро­водность электролита (при постоянной температуре) в значительной степени зависит от его плотности (рис. 3.3). Поэтому при прочих равных условиях лучшими пусковыми свойствами обладают аккумуляторы с плотностью электролита 1.2 – 1.3 г/см 3 .

В разгар учебного года многим ученым деятелям требуется эдс формула для разных расчетов. Эксперименты, связанные с , так же нуждаются в информации об электродвижущей силе. Но для начинающих не так-то просто понять, что же это такое.

Формула нахождения эдс

Первым делом разберемся с определением. Что означает эта аббревиатура?

ЭДС или электродвижущая сила – это параметр характеризующий работу любых сил не электрической природы, работающих в цепях где сила тока как постоянного, так и переменного одинакова по всей длине. В сцепленном токопроводящем контуре ЭДС приравнивается работе данных сил по перемещению единого плюсового (положительного) заряда вдоль всего контура.

Ниже на рисунке представлена эдс формула.

Аст – означает работу сторонних сил в джоулях.

q – это переносимый заряд в кулонах.

Сторонние силы – это силы которые выполняют разделение зарядов в источнике и в итоге образуют на его полюсах разность потенциалов.

Для этой силы единицей измерения является вольт . Обозначается в формулах она буквой « E».

Только в момент отсутствия тока в батареи, электродвижущая си-а будет равна напряжению на полюсах.

ЭДС индукции:

ЭДС индукции в контуре, имеющем N витков:

При движении:

Электродвижущая сила индукции в контуре, крутящемся в магнитном поле со скоростью w :

Таблица значений

Простое объяснение электродвижущей силы

Предположим, что в нашей деревне имеется водонапорная башня. Она полностью наполнена водой. Будем думать, что это обычная батарейка. Башня - это батарейка!

Вся вода будет оказывать сильное давление на дно нашей башенки. Но сильным оно будет только тогда, когда это строение полностью наполнено H 2 O.

В итоге чем меньше воды, тем слабее будет давление и напор струи будет меньше. Открыв кран, заметим, что каждую минуту дальность струи будет сокращаться.

В результате этого:

  1. Напряжение – это сила с которой вода давит на дно. То есть давление.
  2. Нулевое напряжение - это дно башни.

С батареей все аналогично.

Первым делом подключаем источник с энергией в цепь. И соответственно замыкаем ее. Например, вставляем батарею в фонарик и включаем его. Изначально заметим, что устройство горит ярко. Через некоторое время его яркость заметно понизится. То есть электродвижущая сила уменьшилась (вытекла если сравнивать с водой в башне).

Если брать в пример водонапорную башню, то ЭДС это насос качающие воду в башню постоянно. И она там никогда не заканчивается.

Эдс гальванического элемента – формула

Электродвижущую силу батарейки можно вычислить двумя способами:

  • Выполнить расчет с применением уравнения Нернста. Нужно будет рассчитать электродные потенциалы каждого электрода, входящего в ГЭ. Затем вычислить ЭДС по формуле.
  • Посчитать ЭДС формуле Нернста для суммарной ток образующей реакции, протекающей при работе ГЭ.

Таким образом вооружившись данными формулами рассчитать электродвижущую силу батарейки будет проще.

Где используются разные виды ЭДС?

  1. Пьезоэлектрическая применяется при растяжении или сжатии материала. С помощью нее изготавливают кварцевые генераторы энергии и разные датчики.
  2. Химическая используется в и аккумуляторах.
  3. Индукционная появляется в момент пересечения проводником магнитного поля. Ее свойства применяют в трансформаторах, электрических двигателях, генераторах.
  4. Термоэлектрическая образуется в момент нагрева контактов разнотипных металлов. Свое применение она нашла в холодильных установках и термопарах.
  5. Фото электрическая используется для продуцирования фотоэлементов.

Давайте рассмотрим основные параметры аккумулятора, которые понадобяться нам при его эксплуатации.

1. Электродвижущая сила (ЭДС) аккумуляторной батареи - напряжение между выводами аккумуляторной батареи при разомкнутой внешней цепи (и, конечно-же, при отсутствии каких-либо утечек). В «полевых» условиях (в гараже) ЭДС можно измерить любым тестером, перед этим сняв одну из клемм («+» или «-») с аккумулятора.

ЭДС аккумулятора зависит от плотности и от температуры электролита и совершенно не зависит от размеров и формы электродов, а также от количества электролита и активных масс. Изменение ЭДС аккумулятора от температуры весьма мало и при эксплуатации им можно пренебречь. С повышением плотности электролита ЭДС повышается. При температуре плюс 18°С и плотности d = 1,28 г/см 3 аккумулятор (имеется в виду одна банка) обладает ЭДС рав­ной 2,12 В (АКБ - 6 х 2,12 В = 12,72 В). Зависимость ЭДС от плотности электролита при изме­нении плотности в пределах 1,05 ÷ 1,3 г/см 3 вы­ражается эмпирической формулой

Е=0,84+d , где

Е - ЭДС аккумулятора, В;

d - плотность электролита при температуре плюс 18°С, г/см 3 .

По ЭДС нельзя точно судить о степени разряженности ак­кумулятора. ЭДС разряженного аккумулятора с большей плот­ностью электролита будет выше, чем ЭДС заряженного акку­мулятора, но имеющего меньшую плотность электролита.

Путём измерения ЭДС можно только быстро обнаружить серьезную неисправность аккумуляторной батареи (замыкание пластин в одной или нескольких банках, обрыв соединительных проводников между банками и тому подобное).

2. Внутреннее сопротивление аккумулятора представляет собой сумму сопротивлений выводных зажимов, межэлементных соеди­нений, пластин, электролита, сепараторов и сопротивления, во­зникающего в местах соприкосновения электродов с электро­литом. Чем больше емкость аккумулятора (число пластин), тем меньше его внутреннее сопротивление. С понижением темпера­туры и по мере разряда аккумулятора его внутреннее сопротив­ление растет. Напряжение аккумулятора отличается от его ЭДС на величину падения напряжения на внутреннем сопротивлении ак­кумулятора.

При заряде U 3 = Е + I х R ВН ,

а при разряде U Р = Е - I х R ВН , где

I - ток, протекаю­щий через аккумулятор, A;

R ВН - внутреннее сопротивление акку­мулятора, Ом;

Е - ЭДС аккуму­лятора, В.

Изменение напряже­ния на аккумуляторной батарее при ее заряде и разряде показано на Рис. 1.

Рис.1. Изменение напряжения аккумуляторной батареи при её заряде и разряде.

1 - начало газовыделения, 2 - заряд, 3 - разряд.

Напряжение автомобильного генератора, от которого производится заряд батареи, составляет 14,0÷14,5 В . На автомобиле батарея, даже в лучшем случае, при полностью благоприятных условиях, остается недозаряженной на 10÷20% . Виной всему - работа автомобильного генератора.

Достаточное для зарядки напряжение генератор начинает выдавать при 2000 об/мин и более. Обороты холостого хода 800÷900 об/мин . Стиль езды в городе: разгон (длительность меньше минуты), торможение, остановка (светофор, пробка - длительность от 1 минуты до ** часов). Заряд идёт только во время разгона и движения на довольно высоких оборотах. В остальное время идёт интенсивный разряд АКБ (фары, прочие потребители электроэнергии, сигнализация - круглосуточно ).

Ситуация улучшается при движении за городом, но не критическим образом. Длительность поездок не так велика (полный заряд батареи - 12÷15 часов ).

В точке 1 - 14,5 В начинается газовыделение (электролиз воды на кислород и водород), увеличивается расход воды. Другой неприятный эффект при электролизе - увеличивается коррозия пластин, поэтому не следует допускать длительного превышения напряжения 14,5 В на клеммах АКБ.

Напряжение автомобильного генератора (14,0÷14,5 В ) выбрано из компромиссных условий - обеспечение более-менее нормальной зарядки батареи при уменьшении газообразования (снижается расход воды, понижается пожароопасность, уменьшается скорость разрушения пластин).

Из вышесказанного можно сделать вывод, что батарею нужно периодически, хотя бы раз в месяц, полностью дозаряжать внешним зарядным устройством для уменьшения сульфатации пластин и увеличения срока службы.

Напряжение аккумуляторной батареи при ее разряде стартерным током (I Р = 2÷ 5 С 20) зависит от силы раз­рядного тока и темпе­ратуры электролита. На Рис.2 показаны вольт-амперные харак­теристики аккумуля­торной батареи 6СТ-90 при различной темпе­ратуре электролита. Если разрядный ток будет постоянным (например, I Р = 3 С 20 , линия 1), то напряжение батареи при разряде будет тем меньше, чем ниже ее температура. Для сохранения по­стоянства напряжения при разряде (линия 2) необходимо с пониже­нием температуры ба­тареи снижать силу разрядного тока.

Рис.2. Вольт-амперные характеристики АКБ 6СТ-90 при различной температуре электролита.

3. Емкостью аккумулятора (С) называется количество электри­чества, которое аккумулятор отдает при разряде до наименьшего допустимого напряжения. Ёмкость аккумулятора выражается в Ампер-часах (А ч ). Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор, например при определении номинальной емкости аккумуляторной батареи разряд ведется током I = 0,05С 20 до напряжения 10,5 В , температура электролита должна быть в интервале +(18 ÷ 27)°С , а время разряда 20 ч . Считается, что конец срока службы батареи наступает, когда ее емкость составляет 40% от С 20 .

Емкость батареи в стартерных режимах определяется при температуре +25°С и разрядном токе ЗС 20 . В этом случае время разряда до напряжения 6 В (один вольт на аккумулятор) дол­жно быть не менее 3 мин .

При разряде батареи током ЗС 20 (температура электро­лита -18°С ) напряже­ние батареи через 30 с после начала разряда должно быть 8,4 В (9,0 В для необслужи­ваемых батарей), а после 150 с не ниже 6 В . Этот ток иногда называют током холодной прокрутки или пусковым током , он может отличаться от ЗС 20 Этот ток указывается на корпусе батареи рядом с ее емкостью.

Если разряд происходит при постоянной силе тока, то ем­кость аккумуляторной батареи определяется по формуле

С = I х t где,

I - ток разряда, A;

t - время разряда, ч.

Емкость аккумуляторной батареи зависит от ее конструкции, числа пластин, их толщины, материала сепаратора, пористости активного материала, конструкции решетки пластин и других факторов. В эксплуатации емкость батареи зависит от силы разрядного тока, температуры, режима разряда (прерывистый или непрерывный), степени заряженности и изношенности акку­муляторной батареи. При увеличении разрядного тока и степени разряженности, а также с понижением температуры емкость ак­кумуляторной батареи уменьшается. При низких температурах падение емкости аккумуляторной батареи с повышением разряд­ных токов происходит особенно интенсивно. При температуре −20°С остается около 50% от емкости батареи при температуре +20°С.

Наиболее полно состояние аккумуляторной батареи показывает как раз её ёмкость. Для определения реальной емкости достаточно полностью заряженную исправную батарею поставить на разряд током I = 0,05 С 20 (например, для батареи с ёмкостью 55 Ач, I = 0,05 х 55 = 2,75 А). Разряд следует продолжать до достижения величины напряжения на батарее 10,5 В . Время разряда должно составить не менее 20 часов .

В качестве нагрузки при определении ёмкости удобно использовать автомобильные лампы накаливания . Например, чтобы обеспечить разрядный ток 2,75 А , при котором потребляемая мощность составит Р = I x U = 2,75 А x 12,6 В = 34,65 Вт , достаточно соединить параллельно лампу на 21 Вт и лампу на 15 Вт . Рабочее напряжение ламп накаливания для нашего случая должно быть 12 В . Конечно, точность установки тока подобным образом - «плюс-минус лапоть», но для приблизительного определения состояния аккумуляторной батареи вполне достаточно, а так-же дёшево и доступно.

При проверке таким образом новых батарей, время разряда может оказаться меньше 20 часов. Это обусловлено тем, что номинальную ёмкость они набирают после 3÷ 5 полных циклов заряд-разряд.

Ёмкость АКБ можно оценить также с помощью нагрузочной вилки . Нагрузочная вилка состоит из двух контактных ножек, рукоятки, переключаемого нагрузочного сопротивления и вольтметра. Один из возможных вариантов показан на Рис.3.

Рис.3. Вариант нагрузочной вилки .

Для проверки современных батарей, у которых доступны только выходные клеммы, надо использовать 12-ти вольтовые нагрузочные вилки . Нагрузочное сопротивление выбирается таким, чтобы обеспечить нагрузку аккумулятора током I = ЗС 20 (например, при ёмкости батареи 55 Ач, нагрузочное сопротивление должно потреблять ток I = ЗС 20 = 3 х 55 = 165 А). Нагрузочная вилка подсоединяется параллельно выходным контактам полностью заряженной батареи, замечается время, в течение которого выходное напряжение снизится от 12,6 В до 6 В . Это время у новой, исправной и полностью заряженной батареи должно быть не менее трёх минут при температуре электролита +25°С .

4. Саморазряд аккумулятора. Саморазрядом называют снижение емкости аккумуляторов при разомкнутой внешней цепи, то есть при бездействии. Это явление вызвано окислительно-восстановительными процессами, самопроизвольно протекающими как на отрицательном, так и на положительном электродах.

Саморазряду особенно подвержен отрицательный электрод вследствие самопроизвольного растворения свинца (отрицательной активной массы) в растворе серной кислоты.

Саморазряд отрицательного электрода сопровождается выделением газообразного водорода. Скорость самопроизвольного растворения свинца существенно возрастает с повышением концентрации электролита. Повышение плотности электролита с 1,27 до 1,32 г/см 3 приводит к росту скорости саморазряда отрицательного электрода на 40 %.

Саморазряд может возникать также, когда аккумулятор снаружи загрязнен или залит электролитом, водой или другими жидкостями, которые создают возможность разряда через электропроводную пленку, находящуюся между полюсными выводами аккумулятора или его перемычками.

Саморазряд батарей в значительной мере зависит от температуры электролита . С понижением температуры саморазряд уменьшается. При температуре ниже 0°С у новых батарей он практически прекращается. Поэтому хранение батарей рекомендуется в заряженном состоянии при низких температурах (до −30°С). Всё это показано на Рис.4 .

Рис.4. Зависимость саморазряда АКБ от температуры.

В процессе эксплуатации саморазряд не остается постоянным и резко усиливается к концу срока службы.

Для снижения саморазряда необходимо использовать возможно более чистые материалы для производства аккумуляторов, использовать только чистую серную кислоту и дистиллированную воду для приготовления электролита, как при производстве, так и при эксплуатации.

Обычно степень саморазряда выражают в процентах потери емкости за установленный период времени. Саморазряд аккумуляторов считается нормальным, если он не превышает 1% в сутки, или 30% емкости батареи в месяц.

5. Срок хранения новых батарей. В настоящее время автомобильные батареи выпускаются заводом-изготовителем только в сухозаряженном состоянии. Срок хранения батарей без эксплуатации весьма ограничен и не превышает 2 лет (гарантийный срок хранения 1 год ).

6. Срок службы автомобильных свинцово-кислотных аккумуляторных батарей - не менее 4-х лет при соблюдении установленных заводом условий эксплуатации. Из моей практики шесть батарей прослужили по четыре года, а одна, самая стойкая, - целых восемь лет.